These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ultrasound-assisted dispersive liquid-liquid microextraction coupled with field-amplified capillary electrophoresis for sensitive and quantitative determination of fluoxetine and norfluoxetine enantiomers in biological fluids. Author: Wang ZR, Hsieh MM. Journal: Anal Bioanal Chem; 2020 Aug; 412(21):5113-5123. PubMed ID: 32162085. Abstract: A rapid, simple, and sensitive technique for the quantitative detection of fluoxetine and norfluoxetine enantiomers in biological fluids was developed based on the combination of field-amplified sample stacking (FASS)-related capillary electrophoresis (CE) with ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME). The extraction efficiency of UA-DLLME was strongly related to extraction time, salt concentration, type of extraction and dispersion solvents, and volume of extraction and dispersion solvents. The extracted fluoxetine and norfluoxetine enantiomers in a mixture of 50% methanol and 50% deionized water were efficiently stacked using FASS and then separated using cyclodextrin-modified CE. Under optimal conditions of FASS (chiral selector, 3 mM trimethyl-β-cyclodextrin; and background electrolyte, 100 mM phosphate buffer) and UA-DLLME (extraction solvent, 200 μL of acetone; and dispersed solvent, 50 μL of C2H2Cl4 in 1 mL of the sample solution), the obtained enrichment factors of fluoxetine and norfluoxetine enantiomers reached approximately 2000. The linear ranges for the quantification of fluoxetine and norfluoxetine enantiomers were 0.3-150 and 0.6-150 nM, respectively. The relative standard deviations in peak areas and migration time for four analytes were less than 3.3% and 6.3%, respectively. The proposed system provided limits of detection (signal-to-noise ratio of 3) for four analytes corresponding to 0.1 nM. The precision and accuracy for urine and serum samples were less than 6.8 and 8.3%, respectively. These findings suggested that the proposed system exhibited a high potential for the reliable determination of fluoxetine and norfluoxetine enantiomers in clinical samples. Graphical abstract.[Abstract] [Full Text] [Related] [New Search]