These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Construction of a sensitive electrochemical sensor based on 1T-MoS2 nanosheets decorated with shape-controlled gold nanostructures for the voltammetric determination of doxorubicin. Author: Er E, Erk N. Journal: Mikrochim Acta; 2020 Mar 12; 187(4):223. PubMed ID: 32166596. Abstract: An innovative and portable design to fabricate an electrochemical sensor based on metallic phase MoS2 (1T-MoS2) decorated with shape-dependent gold nanostructures for the determination of doxorubicin (DOX) is presented. In this context, homogenous and uniform single-crystal gold nanospheres (AuNSPs) and nanorods (AuNRDs) were firstly synthesized by seeded growth approach. Afterwards, AuNSPs and AuNRDs were anchored on 1T-MoS2 surfaces to construct the desired electrochemical sensing platform towards the DOX assay. 1T-MoS2 was exfoliated by metal intercalation process using NaK metal alloys. The structure and surface morphology of 1T-MoS2, AuNSPs, and AuNRDs were characterized by XPS, Raman, UV-vis, TEM, and SEM. The electrochemical behavior of DOX using various MoS2-based electrochemical sensors prepared on screen-printed electrode (SPE) was examined by cyclic voltammetry and adsorptive stripping differential pulse voltammetry. The electrocatalytic efficiency of AuNRDs on 1T-MoS2 was also compared with that of AuNSPs on 1T-MoS2, and it showed much better electrocatalytic activity towards the DOX. A nanocomposite prepared with AuNRDs and 1T-MoS2 on SPE (AuNRDs/1T-MoS2/SPE) exhibited a linear relationship between peak current and DOX concentration in the range 0.01-9.5 μM with a detection limit of 2.5 nM. The AuNRDs/1T-MoS2/SPE was successfully applied to the sensitive and rapid determination of DOX in spiked human serum samples with satisfactory recoveries in the range 99.2-100.8%. Graphical abstract Schematic representation of a portable design for electrochemical sensor based on shape-controlled gold nanostructures decorated on metallic phase molybdenum disulfide (1T-MoS2) towards the sensitive determination of doxorubicin.[Abstract] [Full Text] [Related] [New Search]