These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional Characterization of Cj1427, a Unique Ping-Pong Dehydrogenase Responsible for the Oxidation of GDP-d-glycero-α-d-manno-heptose in Campylobacter jejuni.
    Author: Huddleston JP, Raushel FM.
    Journal: Biochemistry; 2020 Apr 07; 59(13):1328-1337. PubMed ID: 32168448.
    Abstract:
    The capsular polysaccharides (CPS) of Campylobacter jejuni contain multiple heptose residues with variable stereochemical arrangements at C3-C6. The immediate precursor to all of these possible variations is currently believed to be GDP-d-glycero-α-d-manno-heptose. Oxidation of this substrate at C4 enables subsequent epimerization reactions at C3-C5 that can be coupled to the dehydration/reduction at C5/C6. However, the enzyme responsible for the critical oxidation of C4 from GDP-d-glycero-α-d-manno-heptose has remained elusive. The enzyme Cj1427 from C. jejuni NCTC 11168 was shown to catalyze the oxidation of GDP-d-glycero-α-d-manno-heptose to GDP-d-glycero-4-keto-α-d-lyxo-heptose in the presence of α-ketoglutarate using mass spectrometry and nuclear magnetic resonance spectroscopy. At pH 7.4, the apparent kcat is 0.6 s-1, with a value of kcat/Km of 1.0 × 104 M-1 s-1 for GDP-d-glycero-α-d-manno-heptose. α-Ketoglutarate is required to recycle the tightly bound NADH nucleotide in the active site of Cj1427, which does not dissociate from the enzyme during catalysis.
    [Abstract] [Full Text] [Related] [New Search]