These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Discrete unified gas kinetic scheme for nonlinear convection-diffusion equations.
    Author: Shang J, Chai Z, Wang H, Shi B.
    Journal: Phys Rev E; 2020 Feb; 101(2-1):023306. PubMed ID: 32168639.
    Abstract:
    In this paper, we develop a discrete unified gas kinetic scheme (DUGKS) for a general nonlinear convection-diffusion equation (NCDE) and show that the NCDE can be recovered correctly from the present model through the Chapman-Enskog analysis. We then test the present DUGKS through some classic convection-diffusion equations, and we find that the numerical results are in good agreement with analytical solutions and that the DUGKS model has a second-order convergence rate. Finally, as a finite-volume method, the DUGKS can also adopt the nonuniform mesh. Besides, we perform some comparisons among the DUGKS, the finite-volume lattice Boltzmann model (FV-LBM), the single-relaxation-time lattice Boltzmann model (SLBM), and the multiple-relaxation-time lattice Boltzmann model (MRT-LBM). The results show that the present DUGKS is more accurate than the FV-LBM, more stable than the SLBM, and almost has the same accuracy as the MRT-LBM. Moreover, the use of nonuniform mesh may make the DUGKS model more flexible.
    [Abstract] [Full Text] [Related] [New Search]