These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: C6-ceramide induces salivary adenoid cystic carcinoma cell apoptosis via IP3R-activated UPR and UPR-independent pathways. Author: Qiu L, Liu Z, Wu C, Chen W, Chen Y, Zhang B, Li J, Liu H, Huang N, Jiang Z, Wu Y, Li L. Journal: Biochem Biophys Res Commun; 2020 May 14; 525(4):997-1003. PubMed ID: 32178876. Abstract: C6-ceramide is an exogenous short-chain ceramide which can induce apoptosis of multiple cancer cells. Salivary adenoid cystic carcinoma (SACC) is a common salivary gland cancer, which possesses of high rate of local recurrence and distant metastasis. The mechanism of ceramide-induced SACC-83 and SACC-LM cell apoptosis has not been revealed. In our study, gene expression microarray was used to discover that the unfolded protein response (UPR) pathway, especially PRKR-like endoplasmic reticulum kinase (PERK) pathway, was the major activated pathway after treatment of c6-ceramide. D1ER, an endoplasmic-reticulum-targeted Ca2+ indicator, was used to measure Ca2+ release from endoplasmic reticulum (ER) dynamically. We found that inositol 1,4,5-trisphosphate receptor 3 (IP3R3) was activated, leading to Ca2+ release from ER, soon after c6-ceramide treatment. IP3R3 silencing could block UPR, although it could not prevent SACC-83 and SACC-LM cells from apoptosis. Moreover, we found that C/EBP-homologous protein could upregulate in a UPR-independent way. Mitochondria outer membrane permeabilization might play an important role in inducing SACC cell apoptosis.[Abstract] [Full Text] [Related] [New Search]