These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of the NADH and NADPH-ferredoxin oxidoreductases in clostridia of the butyric group. Author: Petitdemange H, Cherrier C, Raval R, Gay R. Journal: Biochim Biophys Acta; 1976 Feb 24; 421(2):334-7. PubMed ID: 3218. Abstract: NADH and NADPH-ferredoxin oxidoreductases have been studied in Clostridium acetobutylicum, Cl. tyrobutyricum and Cl. pasteurianum. The study of the distribution and regulation of these enzymatic activities in well-defined culture conditions, reveals that the essential function of NADPH-ferredoxin oxidoreductase is to produce NADPH, while NADH-ferredoxin oxidoreductase can, depending on cellular conditions, produce or oxidize NADH. When these Clostridia use glycolysis, regulation of the NADH-ferredoxin oxidoreductase by acetyl-CoA (obligatory activator of NADH-ferroxin reductase activity) and by NADH (competitive inhibitor of ferredoxin-NAD+ reductase activity) allow the enzymes to function correlatively with glyceraldehyde-3-phosphate dehydrogenase and thus control the levels of NAD+ and NADH in the cell. In Cl. tyrobutyricum and Cl. pasteurianum, the ferredoxin-NADP+ reductase activities are regulated by NAD+ and NADH in accordance with the intracellular concentrations of these coenzymes. In Cl. tyrobutyricum growing on pyruvate/acetate, NADH and NADPH-ferredoxin reductase activities cannot be detected; only the ferredoxin-NAD+ and ferredoxin-NADP+ reductase activities are found. In this Clostridium, regulation of the ferredoxin-NADP+ reductase activity is the same whether it is grown on glucose or pyruvate. Contrary to this, the ferredoxin-NAD+ reductase activity undergoes a drastic change, since NADH no longer controls the enzymatic activity. In this case regulation is no longer necessary, since glyceraldehyde-3-phosphate dehydrogenase does not function.[Abstract] [Full Text] [Related] [New Search]