These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: African Adansonia digitata fruit pulp (baobab) modifies provitamin A carotenoid bioaccessibility from composite pearl millet porridges. Author: Debelo H, Ndiaye C, Kruger J, Hamaker BR, Ferruzzi MG. Journal: J Food Sci Technol; 2020 Apr; 57(4):1382-1392. PubMed ID: 32180634. Abstract: Food-to-food fortification of staple cereal products using nutrient-dense plants shows promise to address multiple micronutrient deficiencies including vitamin A, iron and zinc in Sub-Saharan Africa. However, there is limited information on the potential interaction effects that such food-to-food fortified strategies may have on individual micronutrient bioavailability. The main objective of the current study was to investigate the impact of incorporating Adansonia digitata (baobab fruit pulp), a mineral-rich plant material, on the delivery of carotenoids from a composite cereal porridge. Formulations of native fruit/vegetable-cereal composites were screened for interactions which could influence both bioaccessibility and subsequent intestinal uptake of provitamin A carotenoids. Proportions of pearl millet flour and plant materials were dry blended to provide composite cereal porridges with total provitamin A carotenoid concentrations ranging from 3590.7 ± 23.4 to 3698.5 ± 26.5 μg/100 g (fw) and baobab concentrations ranging from 0 to 25% (dw).While there were no significant differences in provitamin A carotenoid bioaccessibility from porridge formulations containing 5 or 15% baobab, inclusion of 25% baobab resulted in a significant (p < 0.05) decrease in bioaccessibility (13.3%) as compared to the control (23.8%). Despite the reduced bioaccessibility, 6 h uptake efficiency of provitamin A carotenoids by Caco-2 human intestinal cells was not significantly altered by 25% baobab inclusion. These findings suggest that the inhibitory effects on carotenoid micellarization (bioaccessibility) observed with increased baobab addition may not ultimately limit the bioavailability of carotenoids.[Abstract] [Full Text] [Related] [New Search]