These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rian/miR-210-3p/Nfkb1 Feedback Loop Promotes Hypoxia-Induced Cell Apoptosis in Myocardial Infarction Through Deactivating the PI3K/Akt Signaling Pathway. Author: Zhong L, Jia J, Ye G. Journal: J Cardiovasc Pharmacol; 2020 Aug; 76(2):207-215. PubMed ID: 32187165. Abstract: Myocardial infarction (MI) is a severe disease that could lead to reversible or irreversible ischemic heart damage. A previous study has revealed that microRNA mmu-miR-210-3p expression is downregulated in fat-1 transgenic mice post-MI. Nevertheless, the specific mechanism of miR-210-3p in MI remains obscure. In this study, we observed that miR-210-3p expression was downregulated in the mice's left ventricle post-MI, and miR-210-3p expression was suppressed while cell apoptosis was promoted in H9c2 cells under hypoxia condition. Besides, miR-210-3p overexpression could enhance cell proliferation and inhibit cell apoptosis in hypoxia-treated H9c2 cells. Then, molecular mechanism assays revealed that miR-210-3p overexpression could activate the PI3K/Akt pathway, and nuclear factor of kappa light polypeptide gene enhancer in B cells 1 (Nfkb1) was the target of miR-210-3p. In addition, RNA imprinted and accumulated in nucleus (Rian), a long noncoding RNA, could sponge miR-210-3p to upregulate Nfkb1 expression. Besides, Nfkb1 was verified to facilitate the transcription of Rian by binding with a Rian promoter. Furthermore, rescue assays revealed that both Nfkb1 and PI3K/Akt pathway are engaged in the Rian-mediated cell proliferation and apoptosis in hypoxia-treated H9c2 cells. In conclusion, a Rian/miR-210-3p/Nfkb1 feedback loop enhances hypoxia-induced cell apoptosis in MI through deactivating the PI3K/Akt pathway.[Abstract] [Full Text] [Related] [New Search]