These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lipopolysaccharide Inhibits Alpha Epithelial Sodium Channel Expression via MiR-124-5p in Alveolar Type 2  Epithelial Cells.
    Author: Ding Y, Cui Y, Zhou Z, Hou Y, Pang X, Nie H.
    Journal: Biomed Res Int; 2020; 2020():8150780. PubMed ID: 32190682.
    Abstract:
    Mesenchymal stem cells (MSCs) have been a potential strategy in the pretreatment of pulmonary diseases, while the mechanisms of MSCs-conditioned medium (MSCs-CM) involved with microRNAs on the regulation of lung ion transport are seldom reported. We investigated the role of miR-124-5p in lipopolysaccharide-involved epithelial sodium channel (ENaC) dysfunction and explored the potential target of miR-124-5p. We observed the lower expression of miR-124-5p after the administration of MSCs-CM, and the overexpression or inhibition of miR-124-5p regulated epithelial sodium channel α-subunit (α-ENaC) expression at protein levels in mouse alveolar type 2 epithelial (AT2) cells. We confirmed that α-ENaC is one of the target genes of miR-124-5p through dual luciferase assay and Ussing chamber assay revealed that miR-124-5p inhibited amiloride-sensitive currents associated with ENaC activity in intact H441 monolayers. Our results demonstrate that miR-124-5p can decrease the expression and function of α-ENaC in alveolar epithelial cells by targeting the 3'-UTR. The involvement of MSCs-CM in lipopolysaccharide-induced acute lung injury cell model could be related to the downregulation of miR-124-5p on α-ENaC, which may provide a new target for the treatment of acute lung injury.
    [Abstract] [Full Text] [Related] [New Search]