These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of pulsed and reversing electric fields on the orientation of linear and supercoiled DNA molecules in agarose gels.
    Author: Stellwagen NC.
    Journal: Biochemistry; 1988 Aug 23; 27(17):6417-24. PubMed ID: 3219343.
    Abstract:
    When linear or supercoiled DNA molecules are imbedded in agarose gels and subjected to electric fields, they become oriented in the gel matrix and give rise to an electric birefringence signal. The sign of the birefringence is negative, indicating that the DNA molecules are oriented parallel to the electric field lines. If the DNA molecules are larger than about 1.5 kilobase pairs, a delay is observed before the birefringence signal appears. This time lag, which is roughly independent of DNA molecular weight, decreases with increasing electric field strength. The field-free decay of the birefringence is much slower for the DNA molecules imbedded in agarose gels than observed in free solution, indicating that orientation in the gel is accompanied by stretching. Both linear and supercoiled molecules become stretched, although the apparent change in conformation is much less pronounced for supercoiled molecules. When the electric field is rapidly reversed in polarity, very little change in the birefringence signal is observed for linear or supercoiled DNAs if the equilibrium orientation (i.e., birefringence) had been reached before field reversal. Apparently, completely stretched, oriented DNA molecules are able to reverse their direction of migration with little or no loss of orientation. If the steady-state birefringence had not been reached before the field reversal, complicated orientation patterns are observed after field reversal. Very large, partially stretched DNA molecules exhibit a rapid decrease in orientation at field reversal. The rate of decrease of the birefringence signal in the reversing field is faster than the field-free decay of the birefringence and is approximately equal to the rate of orientation in the field (after the lag period).(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]