These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evaluation of antibacterial and enhancement of antibiotic action by the flavonoid kaempferol 7-O-β-D-(6″-O-cumaroyl)-glucopyranoside isolated from Croton piauhiensis müll. Author: Cruz BG, Dos Santos HS, Bandeira PN, Rodrigues THS, Matos MGC, Nascimento MF, de Carvalho GGC, Braz-Filho R, Teixeira AMR, Tintino SR, Coutinho HDM. Journal: Microb Pathog; 2020 Jun; 143():104144. PubMed ID: 32194182. Abstract: There has been a rapid increase in the incidence and prevalence of opportunistic bacterial infections. Inappropriate use of current antibiotics has continuously contributed to the emergence of resistance to conventional antibiotic therapy. Therefore, the search for natural molecules that are able to combat infections is of great public interest, and many of these compounds with antimicrobial properties can be obtained from phytochemical studies of medicinal plants. In this context, this study reports the isolation and characterization of the flavonoid, kaempferol 7-O-β-D-(6″-O-cumaroyl)-glucopyranoside, from Croton piauhiensis leaves. Additionally, the intrinsic antimicrobial action of the compound and its enhancement against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus strains were assessed. The minimum inhibitory concentration (MIC) of the compound was determined using broth microdilution assays. To evaluate the modulatory effect of the flavonoid, the MIC of antibiotics amikacin and gentamicin, belonging to the class aminoglycosides was assessed, with and without the compound in sterile microplates. The results of intrinsic antibacterial activity tests revealed that the compound had no antibacterial activity against strains tested at concentrations <1024 μg/mL. The combination of the flavonoid at a concentration of 128 μg/mL with gentamicin presented synergistic effects against S. aureus 10 and E. coli 06, and also reduced the MIC from 16 μg/mL to 4 μg/mL and 8 μg/mL, respectively. Amikacin also showed synergistic effects against S. aureus 10 and E. coli 06. We also observed reduced MIC for both, from 128 μg/mL to 32 μg/mL; however, antagonism for P. aeruginosa increased the MIC from 16 μg/mL to 64 μg/mL. The combination of the flavonoid with the aminoglycosides may be an alternative to potentiate the expected results in treatment against S. aureus and E. coli, since their association leads to a synergistic effect, reducing the MIC of these drugs and decreasing the dose necessary for therapeutic success.[Abstract] [Full Text] [Related] [New Search]