These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Push-pull competition between bottom-up and top-down auditory attention to natural soundscapes.
    Author: Huang N, Elhilali M.
    Journal: Elife; 2020 Mar 20; 9():. PubMed ID: 32196457.
    Abstract:
    In everyday social environments, demands on attentional resources dynamically shift to balance our attention to targets of interest while alerting us to important objects in our surrounds. The current study uses electroencephalography to explore how the push-pull interaction between top-down and bottom-up attention manifests itself in dynamic auditory scenes. Using natural soundscapes as distractors while subjects attend to a controlled rhythmic sound sequence, we find that salient events in background scenes significantly suppress phase-locking and gamma responses to the attended sequence, countering enhancement effects observed for attended targets. In line with a hypothesis of limited attentional resources, the modulation of neural activity by bottom-up attention is graded by degree of salience of ambient events. The study also provides insights into the interplay between endogenous and exogenous attention during natural soundscapes, with both forms of attention engaging a common fronto-parietal network at different time lags. When walking into a busy restaurant or café, our sense of hearing is bombarded with different sounds that our brain has to sort through to make sense of our surroundings. Our brain has to balance the desire to focus our attention on sounds we choose to listen to (such as the friend we are having a conversation with) and sounds that attract our attention (such as the sound of someone else’s phone ringing). Without the ability to be distracted, we might miss a noise that may or may not be crucial to our survival, like the engine roar of an approaching vehicle or a ping notifying us of an incoming email. However, it remains unclear what happens in our brains that enables us to shift our attention to background sounds. To investigate this further, Huang and Elhilali asked 81 participants to focus their attention on a repeating sound while being exposed to background noises from everyday life, such as sounds from a busy café. The experiment showed that when a more noticeable sound happened in the background, such as a loud voice, the participants were more likely to lose attention on their task and miss changes in the tone of the repeating sound. Huang and Elhilali then measured the brain activity of 12 participants as they counted the number of altered tones in a sequence of sounds, again with noise in the background. This revealed that brain waves synchronized with tones that the participants were concentrating on. However, once there was a noticeable event in the background, this tone synchronization was reduced and the brain waves aligned with the background noise. Huang and Elhilali found that distracting noises in the background activate the same region of the brain as sounds we choose to listen to. This demonstrates how background sounds are able to re-direct our attention. These results are consistent with the idea that we have a limited capacity for attention, and that new sensory information can divert brain activity. Having a better understanding of how these processes work could help develop better communication aids for people with impaired hearing, and improve software for interpreting sounds with a noisy background.
    [Abstract] [Full Text] [Related] [New Search]