These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Highly expressed lncRNA FOXD3-AS1 promotes non-small cell lung cancer progression via regulating miR-127-3p/mediator complex subunit 28 axis.
    Author: Zeng ZL, Zhu HK, He LF, Xu X, Xie A, Zheng EK, Ni JJ, Liu JT, Zhao GF.
    Journal: Eur Rev Med Pharmacol Sci; 2020 Mar; 24(5):2525-2538. PubMed ID: 32196603.
    Abstract:
    OBJECTIVE: The present study aimed to determine the expression of long non-coding RNA (lncRNA) FOXD3 antisense RNA 1 (FOXD3-AS1) in lung cancer tissues and to explore its underlying mechanisms in mediating non-small cell lung cancer (NSCLC) progression. MATERIALS AND METHODS: Gene expression levels were determined by quantitative real-time PCR; lung cancer cell proliferation and invasion were determined by in vitro functional assays; protein levels were determined by Western blot assay; xenograft nude mice model was used to evaluate the in vivo tumor growth of lung cancer cells; Luciferase reporter assay determined the interactions among FOXD3-AS1, miR-127-3p, and mediator complex subunit 28 (MED28). RESULTS: Data mining and analysis of the clinical sample showed that FOXD3-AS1 expression was significantly up-regulated in lung cancer tissues. In vitro functional assays demonstrated that FOXD3-AS1 overexpression promoted NSCLC cell proliferation and invasion, while FOXD3-AS1 knockdown exerted tumor-suppressive effects on NSCLC cells. Moreover, FOXD3-AS1 interacted with miR-127-3p by acting as a competing endogenous RNA to suppress miR-127-3p expression, while miR-127-3p repressed MED28 expression by targeting MED28 3' untranslated region in NSCLC cells. Mechanistically, the oncogenic effects of FOXD3-AS1 overexpression were significantly attenuated by miR-127-3p overexpression and MED28 knockdown in NSCLC cells. In the xenograft mice model, FOXD3-AS1 knockdown suppressed in vivo tumor growth of A549 cells, and also up-regulated miR-127-3p expression and repressed MED28 expression in the xenograft tumors. In the clinical aspect, the downregulation of miR-127-3p and up-regulation of MED28 were respectively detected in lung cancer tissues. CONCLUSIONS: Our findings provided new evidence that the FOXD3-AS1 regulated NSCLC progression via targeting the miR-127-3p/MED28 axis.
    [Abstract] [Full Text] [Related] [New Search]