These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of arginine or glutamine supplementation and milk feeding allowance on small intestine development in calves.
    Author: van Keulen P, Khan MA, Dijkstra J, Knol F, McCoard SA.
    Journal: J Dairy Sci; 2020 May; 103(5):4754-4764. PubMed ID: 32197854.
    Abstract:
    The development of the small intestine (SI) is important for the health and growth of neonatal calves. This study evaluated the effect of arginine (Arg) and glutamine (Gln) supplementation and 2 levels of milk allowance on the histomorphological development of the SI in preweaning calves. Sixty mixed-sex Friesian × Jersey calves (3-5 d of age) were offered reconstituted whole milk (125 g/L, 26% fat, 26% protein) at either high (20% of arrival body weight/d; HM) or low (10% of arrival body weight/d; LM) milk allowance without (Ctrl) or with supplementary Arg or Gln (at 1% of milk dry matter) in a 2 × 3 factorial design (n = 10/treatment). After 35 d on the diets, all calves were slaughtered to collect tissues for examination of SI development. Calves in the HM group had higher milk intake, total weight gain, and average daily gain compared with LM calves, but no effect of AA supplementation nor an interaction between milk allowance and AA supplementation was observed. For the duodenum, we observed an AA by milk allowance interaction for villus height and width, and goblet cell number per villus (HM-Arg > HM-Gln > HM-Ctrl), and villus height to crypt depth ratio (HM-Arg > HM-Gln = HM-Ctrl), but no effect of AA supplementation in the LM group. Goblet cell numbers per 100 µm of SI were greater in Arg-supplemented calves than in unsupplemented controls, with Gln-supplemented calves intermediate to but not different from the other groups. Epithelium thickness was greater in LM than in HM calves. Villus density, crypt depth, and muscle thickness did not differ between groups. For the jejunum, there was an AA by milk allowance interaction for villus height, villus surface area, and villus height to crypt depth ratio (HM-Arg = HM-Gln > HM-Ctrl), with no effect of AA supplementation in the LM groups. Amino acid supplementation affected goblet cell number per villus (HM-Gln > HM-Ctrl calves, HM-Arg intermediate), and both LM-Arg and LM-Gln calves had greater numbers than LM-Ctrl calves. Villus width, crypt depth, and muscle thickness were greater in HM than LM calves but there was no effect of AA supplementation. Villus density, goblet cell number per 100 µm of SI, and epithelium thickness were unaffected by AA supplementation and milk allowance. Milk allowance and AA supplementation had no effect on SI morphology in the ileum. Increasing milk allowance improved villus height, width, and surface area but only in Arg- or Gln-supplemented calves, not in control calves. The observed changes in development may be important for intestinal functionality, integrity, and barrier function in preweaning calves, potentially through increased cell growth and proliferation or reduced levels of cellular atrophy.
    [Abstract] [Full Text] [Related] [New Search]