These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A muscle-specific calpain, CAPN3, forms a homotrimer. Author: Hata S, Doi N, Shinkai-Ouchi F, Ono Y. Journal: Biochim Biophys Acta Proteins Proteom; 2020 Jul; 1868(7):140411. PubMed ID: 32200007. Abstract: Calpain-3 (CAPN3), a 94-kDa member of the calpain protease family, is abundant in skeletal muscle. Mutations in the CAPN3 gene cause limb girdle muscular dystrophy type 2A, indicating that CAPN3 plays important roles in muscle physiology. CAPN3 has several unique features. A crystallographic study revealed that its C-terminal penta-EF-hand domains form a homodimer, suggesting that CAPN3 functions as a homodimeric protease. To analyze complex formation of CAPN3 in a more convenient manner, we performed blue native polyacrylamide gel electrophoresis and found that the observed molecular weight of native CAPN3, as well as recombinant CAPN3, was larger than 240 kDa. Further analysis by cross-linking and sequential immunoprecipitation revealed that CAPN3 in fact forms a homotrimer. Trimer formation was abolished by the deletion of the PEF domain, but not the CAPN3-specific insertion sequences NS, IS1, and IS2. The PEF domain alone formed a homodimer, as reported, but addition of the adjacent CBSW domain to its N-terminus reinforced the trimer-forming property. Collectively, these results suggest that CAPN3 forms a homotrimer in which the PEF domain's dimer-forming ability is influenced by other domains.[Abstract] [Full Text] [Related] [New Search]