These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Acceleration intensity is an important contributor to the external and internal training load demands of repeated sprint exercises in soccer players. Author: Beato M, Drust B. Journal: Res Sports Med; 2021; 29(1):67-76. PubMed ID: 32200649. Abstract: The aim of this study was to evaluate the effect of acceleration on the external and internal load during repeated sprint exercises (RSE). This study used a cross-over design. Sixteen soccer players were included (mean ± SDs: age 21 ± 1 years; weight 71.1 ± 7.7 kg). RSE was 3 sets of 7 × 30 m sprints with 25 s and 3 min recovery between sprints and sets, respectively. RSE was performed using two protocols requiring either 10 m maximal acceleration (2.12 m.s-2 [RSE-MA]) or 10 m submaximal acceleration (1.66 m.s-2 [RSE-SA]). Global positioning systems (10 Hz; STATSports, Viper) were utilized to collect: high speed running (HSR), dynamic stress load (DSL), Heart Rate (HR) peak, time >85% HR peak, respiratory (RPEres) and muscular (RPEmus) rating of perceived exertion. RSE-MA induced higher load than RSE-SA in HSR (p = 0.037, ES = 0.20), DSL (p = 0.027, ES = 0.43), HR peak (p = 0.025, ES = 0.47), Time >85% HR peak (p = 0.028, ES = 1.11), RPEres (p = 0.001, ES = 1.10), and RPEmus (p = 0.001, ES = 0.73). This study shows that a different acceleration intensity in a RSE (MA vs. SA) impacts external and internal training load parameters.[Abstract] [Full Text] [Related] [New Search]