These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: LncRNA AGAP2-AS1 augments cell viability and mobility, and confers gemcitabine resistance by inhibiting miR-497 in colorectal cancer. Author: Hong S, Yan Z, Song Y, Bi M, Li S. Journal: Aging (Albany NY); 2020 Mar 23; 12(6):5183-5194. PubMed ID: 32202509. Abstract: BACKGROUND: Most recently, long non-coding RNAs (lncRNAs) emerge as crucial modulators in many biological processes, such as embryonic development, cell growth, and tumorigenesis. However, the correlations between lncRNAs and colorectal cancer (CRC) cell proliferation, metastasis, and gemcitabine resistance are not well understood. RESULTS: The expression of AGAP2-AS1 was overexpressed in CRC tissues and negatively correlated with the survival of patients with CRC. AGAP2-AS1 promoted CRC cell proliferation and inhibited apoptosis. Moreover, AGAP2-AS1 enhanced the chemoresistance of CRC cells to gemcitabine. In addition, AGAP2-AS1 enhanced the migration and invasion of CRC cells. Mechanistic studies showed that AGAP2-AS1 regulated fibroblast growth factor receptor 1 (FGFR1) expression by sponging miR-497 in CRC progression. CONCLUSION: We identified an oncogenic role of AGAP2-AS1 in the development and progression of CRC. METHODS: qRT-PCR was used to measure the expression of AGAP2 Antisense RNA 1 (AGAP2-AS1) in 116 cases of CRC and adjacent normal tissues. Luciferase reporter assays was used to detect the interaction between AGAP2-AS1 and miR-497. The xenograft tumor experiment was used to study the in vivo function of AGAP2-AS1.[Abstract] [Full Text] [Related] [New Search]