These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preparation and properties of a highly dispersed nano-hydroxyapatite colloid used as a reinforcing filler for chitosan. Author: Ying R, Wang H, Sun R, Chen K. Journal: Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110689. PubMed ID: 32204004. Abstract: Hydroxyapatite/chitosan (HAp/CS) composites have been widely studied and applied in tissue engineering fields due to their excellent biocompatibility and degradability. However, to improve the mechanical properties of CS, cross-linking agents are commonly added, which will seriously affect its biocompatibility and safety. In this study, the homogenously dispersed nano-hydroxyapatite (nHAp) colloidal solution was first synthesized using a co-precipitation method. The three-dimensional porous nano-hydroxyapatite/chitosan (nHAp/CS) composite scaffolds with different nHAp contents were then obtained through an environmentally friendly freeze-drying process without any cross-linking. The microstructure, porosity, phase composition, swelling ratio, mechanical properties, and biocompatibility of the nHAp/CS scaffolds were thoroughly investigated. The as-prepared nHAp/CS scaffolds exhibited a high porosity and excellent swelling performance. Compared with pure CS scaffolds, the nHAp/CS composite scaffolds not only showed higher compressive modulus but also exhibited better biocompatibility. This study provides a simple and environmentally friendly technique to construct three-dimensional porous nHAp/CS composite scaffolds, which demonstrate promising potential by being a scaffold material for bone tissue engineering.[Abstract] [Full Text] [Related] [New Search]