These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: Physicochemical, mechanical and in vivo evaluations. Author: El-Fiqi A, Kim JH, Kim HW. Journal: Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110660. PubMed ID: 32204088. Abstract: Bone-mimetic scaffolds are receiving much interest as such scaffolds exhibit excellent biocompatibility and very close mimic to bone structure and composition. Here, novel bone-mimetic nanohydroxyapatite (nHA)/collagen (Col) porous scaffolds (nHA/Col) were prepared from surface silanized mesoporous nanobioglass (NBG)/Col hybrid scaffold by biomimetic mineralization. Surface silanized mesoporous NBG was prepared by ultrasound-assisted sol-gel method and post treatment with 3-aminopropyltriethylsilane (APTS). The surface silanized mesoporous NBG was characterized by transmission electron microscopy (TEM), transmission electron microscopy-selected area electron diffraction (TEM-SAED) and X-ray photoelectron spectroscopy (XPS). The physicochemical/mechanical characterizations of the scaffolds included scanning electron microscopy (SEM) and TEM imaging of micro/nanostructure, energy dispersive X-ray (EDX) analysis of chemical composition, TEM-SAED and X-ray diffraction/Attenuated total Reflectance-Fourier Infrared spectroscopy (XRD/ATR-FTIR) analyses of amorphous-to-crystalline transformations, thermogravimetric/differential scanning calorimetric (TGA/DSC) analyses of thermal behaviour , porosity and dynamic mechanical analyses. The presence of NBG in collagen fibrillar network enabled progressive growth of HA nanocrystals and generation of a novel bone-mimetic hybrid structures while preserving the highly porous structure of collagen scaffold. The crystallinity, crystallite size and crystal morphology of the grown HA nanocrystals were controllable by regulation of the mineralization time. Furthermore, the osteogenic properties of the non-mineralized (NBG/Col) and mineralized (nHA/Col) hybrid porous scaffolds were examined in vivo using critical-sized calvarial bone defect model in rat. Histological and micro-computed tomography (Micro-CT) analyses after 6 weeks of implantation revealed that the mineralized scaffolds possess excellent in vivo osteogenic potential compared to the non-mineralized one. Collectively, by using surface silanized mesoporous NBG hybridization with collagen fibrillar network, we successfully introduced a new approach for developing novel bone-mimetic nanohydroxyapatite/collagen hybrid scaffolds that possess significant potential for bone tissue regeneration.[Abstract] [Full Text] [Related] [New Search]