These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fabrication of a double-layer membrane cathode based on modified carbon nanotubes for the sequential electro-Fenton oxidation of p-nitrophenol.
    Author: Tang Q, Li B, Ma W, Gao H, Zhou H, Yang C, Gao Y, Wang D.
    Journal: Environ Sci Pollut Res Int; 2020 May; 27(15):18773-18783. PubMed ID: 32207003.
    Abstract:
    To improve the electrocatalytic efficiency of the cathode and provide a wider pH range in the electro-Fenton process, N-doped multi-walled carbon nanotubes (NCNTs) and ferrous ion complexed with carboxylated carbon nanotubes (CNT-COOFe2+) were used to fabricate the diffusion layer and catalyst layer of a membrane cathode, respectively. The morphology, structure, and composition of CNT-COOFe2+ were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The oxygen reduction performance of NCNT was evaluated using cyclic voltammetry (CV) and the rotating disk electrode technique (RDE). In addition, a potential application of the cathode in sequential electro-Fenton degradation of p-nitrophenol (p-NP) was investigated. The results revealed that iron was successfully doped on the carboxylated carbon nanotubes in ionic complexation form and the content of iron atoms in CNT-COOFe2+ was 2.65%. Furthermore, the defects on the tube walls provided more reactive sites for the electro-Fenton process. A combination of CV and RDE data indicated that NCNT had better electrocatalytic H2O2 generation activity with a more positive onset potential and higher cathodic peak current response than CNT. A p-NP removal rate of 96.04% was achieved within 120 min, and a mineralization efficiency of 80.26% was obtained at 180 min in the sequential electro-Fenton process at a cathodic potential of - 0.7 V vs SCE and neutral pH. The activity of the used cathode was restored simply through electro-reduction at - 1.0 V vs SCE, and a p-NP removal rate of more than 70% was obtained at 60 min after six regeneration cycles.
    [Abstract] [Full Text] [Related] [New Search]