These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel processing techniques and spinach juice: Quality and safety improvements. Author: Manzoor MF, Ahmed Z, Ahmad N, Aadil RM, Rahaman A, Roobab U, Rehman A, Siddique R, Zeng XA, Siddeeg A. Journal: J Food Sci; 2020 Apr; 85(4):1018-1026. PubMed ID: 32222053. Abstract: In this study, the combined effect of ultrasound (US) and pulsed electric field (PEF) techniques was analyzed for the quality improvement and microbial safety of spinach juice. The spinach juice was treated with US at frequency of 40 kHz, radiating power of 200 W below 30 ± 2 °C temperature for 21 min in ultrasonic bath cleaner, and PEF treatment (pulse frequency: 1 kHz, flow rate: 60 mL/min, temperature: 30 ± 2 °C, time: 335 µs, electric field strength 9 kV/cm) was done. In results, the combined (US-PEF) treatment attained the highest value of minerals and total free amino acids as compared to US or PEF treatment alone. US-PEF treatment significantly reduced the total plate count (3.83 to 1.97 log CFU/mL), E. coli/Coliform (1.90 to 0.75 log CFU/mL) and yeast and mold (4.23 to 2.22 log CFU/mL). Fourier-transform infrared spectroscopy (FT-IR) spectra showed that all nonthermal treatments led to a higher concentration of carbonyl compounds rather generate new carbonyl compounds. US-PEF treatment significantly reduced the particle size. The rheology of spinach juice was drastically changed by all nonthermal techniques, indicating non-Newtonian modal accompanied by a decrease of consistency index (K), apparent viscosity (η), and increase of flow behavior (n). Overall, the improved quality of spinach juice shows the suitability of both technologies for industrial applications despite the variations in rheological properties. PRACTICAL APPLICATION: Nowadays, nonthermal technologies like US and PEF are being used to enhance the nutritional quality and stability of different fruits and vegetable juices. The current research shows that US-PEF application can enhance the free amino acids and mineral contents while significantly decrease microbial activities and particle size. The rheology of spinach juice can be dramatically changed, through the reduction of consistency index (K), apparent viscosity (η) and elevation of flow behavior (n). The results of this research proposed that US-PEF treatment can be a more suitable nonthermal application to enhance the quality of spinach juice at an industrial scale.[Abstract] [Full Text] [Related] [New Search]