These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Carbon dioxide as a carrier gas and mixed feedstock pyrolysis decreased toxicity of sewage sludge biochar. Author: Kończak M, Pan B, Ok YS, Oleszczuk P. Journal: Sci Total Environ; 2020 Jun 25; 723():137796. PubMed ID: 32222497. Abstract: The common use of sewage sludge (SSL)-derived biochar can be limited due to contaminants present in SSL, which may affect SSL-derived biochar toxicity. We propose the reduction of SSL-derived biochar toxicity by it co-pyrolysis with biomass and in CO2 atmosphere. Ecotoxicity of biochars produced at 500, 600, and 700 °C from SSL and SSL with the addition of willow (at a ratio of SSL:willow - 8:2 and 6:4, w/w) in an atmosphere of N2 or CO2 were investigated. The toxicity of aqueous extracts derived from the biochars (Lepidium sativum - Elongation test, Vibrio fischeri - Microtox) or solid-phase toxicity (Lepidium sativum - Phytotoxkit F, Folsomia candida - Collembolan test) was also studied. SSL-derived biochar produced at N2 atmosphere usually was toxic for all tested organisms. Co-pyrolysis of mixed feedstock reduced the toxicity of the produced biochar. In the case of biochars produced from SSL and willow under N2 atmosphere decrease in inhibition of F. candida reproduction (from 27 to 58%) or its stimulation (from 7 to 30%) in comparison to SSL alone derived biochar, was observed. Co-pyrolysis of SSL with willow significantly reduced the toxicity of extracts the SSL-derived biochar towards L. sativum. The aqueous extracts obtained from the biochars produced at temperatures of 500 and 600 °C with willow addition were also less toxic to V. fischeri than the biochars produced from SSL alone. The change of carrier gas from N2 to CO2, regardless of the feedstock used, in most cases reduced toxicity or positively affected the test organisms. This was probably caused by changes in the physicochemical properties and content of contaminants in the biochars produced in an atmosphere of CO2, compared to N2. An exception was root growth inhibition in the solid phase tests where no significant differences were found between biochars produced in N2 and CO2.[Abstract] [Full Text] [Related] [New Search]