These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Daphnane Diterpenoids from Daphne genkwa Inhibit PI3K/Akt/mTOR Signaling and Induce Cell Cycle Arrest and Apoptosis in Human Colon Cancer Cells. Author: Pan RR, Zhang CY, Li Y, Zhang BB, Zhao L, Ye Y, Song YN, Zhang M, Tie HY, Zhang H, Zhu JY. Journal: J Nat Prod; 2020 Apr 24; 83(4):1238-1248. PubMed ID: 32223193. Abstract: Seven new daphnane-type diterpenoids, daphgenkins A-G (1-7), and 15 known analogues (8-22) were isolated from the flower buds of Daphne genkwa. Their structures and absolute configurations were elucidated by spectroscopic data and calculated ECD analyses. The cytotoxicities of all daphnane-type diterpenoids (1-22) obtained were evaluated against three human colon cancer cell lines (SW620, RKO, and LoVo). Compounds 1, 12, and 13 exhibited cytotoxic effects against the SW620 and RKO cell lines, with IC50 values in the range of 3.0-9.7 μM. The most active new compound, 1, with an IC50 value of 3.0 μM against SW620 cells, was evaluated further for its underlying molecular mechanism. Compound 1 induced G0/G1 cell cycle arrest, leading to the induction of apoptosis in SW620 cells. Also, it induced cancer cell apoptosis by an increased ratio of Bax/Bcl-2, activated cleaved caspase-3 and caspase-9, and upregulated PARP. Finally, compound 1 significantly inhibited PI3K/Akt/mTOR signaling in SW620 cells. Together, the results suggest that compound 1 may be a suitable lead compound for further biological evaluation.[Abstract] [Full Text] [Related] [New Search]