These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Small Molecule Carboxylates Inhibit Metallo-β-lactamases and Resensitize Carbapenem-Resistant Bacteria to Meropenem.
    Author: Tehrani KHME, Brüchle NC, Wade N, Mashayekhi V, Pesce D, van Haren MJ, Martin NI.
    Journal: ACS Infect Dis; 2020 Jun 12; 6(6):1366-1371. PubMed ID: 32227874.
    Abstract:
    In the search for new inhibitors of bacterial metallo-β-lactamases (MBLs), a series of commonly used small molecule carboxylic acid derivatives were evaluated for their ability to inhibit New Delhi metallo-β-lactamase (NDM)-, Verona integron-encoded metallo-β-lactamase (VIM)-, and imipenemase (IMP)-type enzymes. Nitrilotriacetic acid (3) and N-(phosphonomethyl)iminodiacetic acid (5) showed promising activity especially against NDM-1 and VIM-2 with IC50 values in the low-to-sub μM range. Binding assays using isothermal titration calorimetry reveal that 3 and 5 bind zinc with high affinity with dissociation constant (Kd) values of 121 and 56 nM, respectively. The in vitro biological activity of 3 and 5 against E. coli expressing NDM-1 was evaluated in checkerboard format, demonstrating a strong synergistic relationship for both compounds when combined with Meropenem. Compounds 3 and 5 were then tested against 35 pathogenic strains expressing MBLs of the NDM, VIM, or IMP classes. Notably, when combined with Meropenem, compounds 3 and 5 were found to lower the minimum inhibitory concentration (MIC) of Meropenem up to 128-fold against strains producing NDM- and VIM-type enzymes.
    [Abstract] [Full Text] [Related] [New Search]