These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The giant planar Hall effect and anisotropic magnetoresistance in Dirac node arcs semimetal PtSn4. Author: Yan J, Luo X, Gao JJ, Lv HY, Xi CY, Sun Y, Lu WJ, Tong P, Sheng ZG, Zhu XB, Song WH, Sun YP. Journal: J Phys Condens Matter; 2020 May 11; 32(31):. PubMed ID: 32235052. Abstract: Topological semimetals (TSMs) present intriguing quantum states and have attracted much attention in recent years because of exhibiting various anomalous magneto-transport phenomena. Theoretical prediction shows that some novel phenomena, such as negative magnetoresistance (MR) and the planar Hall effect (PHE), originate from the chiral anomaly in TSMs. In this work, high-field (33 T) Shubnikov-de Haas (SdH) oscillations are obtained to reveal the topology of PtSn4. Giant PHE and anisotropic magnetoresistance (AMR) are observed in Dirac node arcs of semimetal PtSn4. First, a non-zero transverse voltage can be acquired while tilting the in-plane magnetic field. Moreover, the amplitude of PHE sharply increases atT*∼ 50 K with decreasing temperature, which is suggested to be related to the Fermi surface reconstruction observed in PtSn4. Subsequently, the field-dependent amplitudes of the PHE show an abnormal behavior around 50 K, which is thought to stem from the complex correlation between the chiral charge and electric one in PtSn4driving the system into different coupling states due to the complicated band structure. On the other hand, the relative AMR is negative and up to -98% at 8.5 T. Our work proves that the PHE measurements are a convincing transport fingerprint feature to confirm the chiral anomaly in TSMs.[Abstract] [Full Text] [Related] [New Search]