These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nickel nanoparticles embedded in porous carbon nanofibers and its electrochemical properties. Author: Bai Z, Liu S, Chen P, Cheng G, Wu G, Li H, Liu Y. Journal: Nanotechnology; 2020 Jul 24; 31(30):305705. PubMed ID: 32235076. Abstract: Flexible porous carbon nanofibers containing nickel nanoparticles were synthesized by direct carbonization of electrospun Ni-MOFs/polyacrylonitrile fibers. The as-synthesized composite nanofibers were employed as binder-free electrodes, and exhibit high specific capacitance (up 672 F g-1 at current density of 2 A g-1) and superior rate capability (57% capacitance retention from current density of 2-10 A g-1), which may be attributed to their binder-free nature, unique one-dimensional (1D) structure and highly dispersed electrochemically active nickel nanoparticles. Furthermore, a symmetric supercapacitor was assembled using the fiber electrodes in 6 M KOH, and the energy density of 17.8 Wh kg-1 was achieved in a potential window of 1.5 V. This self-standing fiber with abundant mesopores and macropores is expected to become a promising electrode material for high-performance supercapacitors.[Abstract] [Full Text] [Related] [New Search]