These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Toxicity assessments of acrylamide in aquatic environment using two algae Nitzschia closterium and Scenedesmus quadricauda. Author: Xu W, Tan L, Zhao T, Zhu X, Wang J. Journal: Environ Sci Pollut Res Int; 2020 Jun; 27(16):20545-20553. PubMed ID: 32246420. Abstract: The expanding production and widespread application of acrylamide caused inevitable release to aquatic ecosystems. Contrary to its extensive attention to human and animal health, the hazards of acrylamide to the aquatic primary productivity have been rarely studied. The potential effects of acrylamide on the marine algae (Nitzschia closterium) and the limnetic algae (Scenedesmus quadricauda) were investigated by monitoring cell abundance, total chlorophyll content, maximum photosystem II (PSII) quantum yield (Fv/Fm), and reactive oxygen species (ROS). The growth of two algae was significantly inhibited by acrylamide. The 96 h EC50 of acrylamide on N. closterium and S. quadricauda were 5.50 mg L-1 and 45.3 mg L-1, and no observed effect concentration (NOEC) were 1.07 mg L-1 and 6.97 mg L-1, respectively. After 96 h exposure to 50 mg L-1 of acrylamide, the total chlorophyll content declined to approximate 18% (N. closterium) and 48% (S. quadricauda), and Fv/Fm was observed to be 0.35 and 0.32 for N. closterium and S. quadricauda, respectively. ROS was significantly increased following higher exposure concentrations, and its levels increased around 2.1-fold and 1.4-fold following exposure to 5 mg L-1 of acrylamide. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed the visible cell plasmolysis, rupture of the plasma membrane, cell vacuolization, and disintegration of chloroplasts of the algae caused acrylamide.[Abstract] [Full Text] [Related] [New Search]