These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: pH-sensitive small molecule nanodrug self-assembled from amphiphilic vitamin B6-E analogue conjugate for targeted synergistic cancer therapy. Author: Yan G, Chen R, Xiong N, Song J, Wang X, Tang R. Journal: Colloids Surf B Biointerfaces; 2020 Jul; 191():111000. PubMed ID: 32247946. Abstract: To promote the targeted cancer therapy, the pH-sensitive small molecule nanodrug self-assembled from amphiphilic vitamin B6-E analogue conjugate was successfully constructed. Herein, water-soluble vitamin B6 with pKa (5.6) was chemically conjugated to lipid-soluble vitamin E succinate (α-TOS), which showed selective cancer cell killing ability and this amphiphilic small molecule vitamin conjugate could self-assemble to be free nanoparticles (NPs) and doxorubicin-loaded NPs (α-TOS-B6-NPs-DOX). The small molecule nanodrugs could perform the following characteristic: (i) stability in the sodium dodecyl sulfonate (SDS) solution and long-term storage stability in PBS via surface negative charge; (ii) tumor accumulation by enhanced penetration and retention (EPR) effect; (iii) improved cellular internalization by means of vitamin B6 transporting membrane carrier (VTC); and (iv) facilitating endosomal escape and rapid drug release for synergistic toxicity to tumor cells via charge reversal and ester hydrolysis at intracellular pH and/or esterase. Moreover, α-TOS-B6-NPs-DOX exhibited long blood circulation stability and significant tumor accumulation and inhibition with the decreased side effects in vivo. Thus, the pH-sensitive small molecule nanodrug self-assembled from amphiphilic vitamin B6-E analogue conjugate could be the potential drug carriers in targeted synergistic cancer therapy.[Abstract] [Full Text] [Related] [New Search]