These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inositol Pyrophosphate Metabolism Regulates Presynaptic Vesicle Cycling at Central Synapses. Author: Park SJ, Park H, Kim MG, Zhang S, Park SE, Kim S, Chung C. Journal: iScience; 2020 Apr 24; 23(4):101000. PubMed ID: 32252022. Abstract: The coordination of synaptic vesicle exocytosis and endocytosis supports neurotransmitter release from presynaptic terminals. Although inositol pyrophosphates, such as 5-diphosphoinositol pentakisphosphate (5-IP7), are versatile signaling metabolites in many biological events, physiological actions of 5-IP7 on synaptic membrane vesicle trafficking remain unclear. Here, we investigated the role of 5-IP7 in synaptic transmission in hippocampal brain slices from inositol hexakisphosphate kinase 1 (Ip6k1)-knockout mice. We found that presynaptic release probability was significantly increased in Ip6k1-knockout neurons, implying enhanced activity-dependent synaptic vesicle exocytosis. Expression of wild-type but not catalytically inactive IP6K1 in the Ip6k1-knockout hippocampus restored the altered presynaptic release probability. Moreover, Ip6k1-knockout neurons were insensitive to folimycin, a vacuolar ATPase inhibitor, and dynasore, a dynamin inhibitor, suggesting marked impairment in synaptic endocytosis during exocytosis. Our findings collectively establish that IP6K1 and its product, 5-IP7, act as key physiological determinants for inhibition of presynaptic vesicle exocytosis and stimulation of endocytosis at central synapses.[Abstract] [Full Text] [Related] [New Search]