These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evaluation of soft-plaque stenoses in coronary artery stents using conventional and monoenergetic images: first in-vitro experience and comparison of two different dual-energy techniques.
    Author: Hickethier T, Wenning J, Bratke G, Maintz D, Michels G, Bunck AC.
    Journal: Quant Imaging Med Surg; 2020 Mar; 10(3):612-623. PubMed ID: 32269922.
    Abstract:
    BACKGROUND: Non-invasive coronary imaging after stent placement remains challenging. Favorable results for dual-energy computed tomography (DECT) derived monoenergetic (MonoE) images have been reported for this purpose. Nowadays, there are different dual-energy techniques available, each with specific advantages and disadvantages. However, for the evaluation of coronaries after stent implantation there is no systematic comparison between different dual-energy techniques. Therefore, the aim of our study was to compare two widely used DECT systems using an in-stent restenosis (ISR) phantom setup. METHODS: Soft-plaque-like stenoses (~50% of lumen) were inserted into ten coronary stents embedded in contrast-filled vessel phantoms. A dual-source CT (DSCT) and a dual-layer CT (DLCT) with comparable acquisition and reconstruction parameters were used. Conventional polyenergetic (PolyE) and MonoE images with 9 different levels (40-120 keV) were calculated. ISR assessability was evaluated by subjective scoring using a 5-point scale and by the following quantitative parameters: image noise, visible lumen diameter (VLD) and ISR contrast-to-noise ratio (CNR). RESULTS: A non-significant trend towards larger VLD in DLCT images was observed. Highest noise was found in low-keV MonoE with significantly higher values for DSCT than for DLCT. Conversely, noise was significantly lower for DSCT at higher-keV MonoE. Peak ISR CNR values were found at low-keV MonoE with no significant difference between both systems. However, for PolyE and mid-energy MonoE, CNRs were significantly higher for DSCT. Subjective image quality was significantly better for PolyE and low-keV MonoE than for high-keV MonoE, also without significant difference between both systems. CONCLUSIONS: Conspicuity of ISR benefits from DECT. Peak CNRs were comparable for both DECT systems and low-keV MonoE offered the highest CNR values and best subjective image quality. In contrast, high-keV MonoE cannot be recommended for stent evaluation due to poor CNR values and therefore significantly limited visualization of stenoses.
    [Abstract] [Full Text] [Related] [New Search]