These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 4-hydroxybenzo[d]oxazol-2(3H)-one ameliorates LPS/D-GalN-induced acute liver injury by inhibiting TLR4/NF-κB and MAPK signaling pathways in mice.
    Author: Wang H, Wei X, Wei X, Sun X, Huang X, Liang Y, Xu W, Zhu X, Lin X, Lin J.
    Journal: Int Immunopharmacol; 2020 Jun; 83():106445. PubMed ID: 32272395.
    Abstract:
    The purpose of this study was to synthesize 4-hydroxybenzo[d]oxazol-2(3H)-one (HBO) and to investigate its protective effects on lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute liver injury. HBO (C7H5O3N) was synthesized based on 2-nitro-resorcinol and identified by physicochemical analysis. In the animal experiment, mice were pretreated with HBO (50, 100, 200 mg/kg) for 10 days. At the end of pretreatment, the animals were injected with LPS (10 µg/kg)/D-GalN (700 mg/kg). The results showed that HBO significantly alleviated liver injury induced by LPS/D-GalN in mice. It remarkably decreased inflammatory response by reducing the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Moreover, HBO notably attenuated hepatocyte apoptosis by inhibiting the release of Cytochrome C (Cyt C) from mitochondria into the cytoplasm and regulating the expression of B-cell lymphoma-2 (Bcl-2) family. Furthermore, the result showed that HBO inhibited the expressions of nuclear factor kappa-B p50 (NF-κBp50), toll-like receptor 4 (TLR4), and myeloid differentiation factor 88 (MyD88), as well as the phosphorylation of inhibitor of nuclear factor kappa-B (IκB), inhibitor of nuclear factor kappa-B kinase-α/β (IKK-α/β), nuclear factor kappa-B p65 (NF-κBp65), suggesting that HBO had a certain influence on the TLR4/NF-κB pathway. In addition, the mitogen-activated protein kinase (MAPK) signaling pathway was also affected by HBO, as evidenced by the decrease in the phosphorylation levels of extracellular regulated protein kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38). In conclusion, our study suggested that HBO could protect against LPS/D-GalN-induced liver injury, moreover, treatment with HBO appeared to be capable of further regulating the TLR4/NF-κB and MAPK signaling pathways.
    [Abstract] [Full Text] [Related] [New Search]