These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Strain, electric-field and functionalization induced widely tunable electronic properties in MoS2/BC 3, /C 3 N and /[Formula: see text] van der Waals heterostructures. Author: Bafekry A, Stampfl C, Ghergherehchi M. Journal: Nanotechnology; 2020 May 01; 31(29):295202. PubMed ID: 32272455. Abstract: In this paper, the effect of BC 3, C 3 N and [Formula: see text] substrates on the atomic and electronic properties of MoS2 were systematically investigated using first-principles calculations. Our results show that the MoS2/BC 3 and MoS2/C 3 N4 heterostructures are direct semiconductors with band gaps of 0.4 and 1.74 eV, respectively, while MoS2/C 3 N is a metal. Furthermore, the influence of strain and electric field on the electronic structure of these van der Waals heterostructures is investigated. The MoS2/BC3 heterostructure, for strains larger than -4%, transforms it into a metal where the metallic character is maintained for strains larger than -6%. The band gap decreases with increasing strain to 0.35 eV (at +2%), while for strain (>+6%) a direct-indirect band gap transition is predicted to occur. For the MoS2/C3N heterostructure, the metallic character persists for all strains considered. On applying an electric field, the electronic properties of MoS2/C3N4 are modified and its band gap decreases as the electric field increases. Interestingly, the band gap reaches 30 meV at +0.8 V/Å, and with increase above +0.8 V/Å, a semiconductor-to-metal transition occurs. Furthermore, we investigated effects of semi- and full-hydrogenation of MoS2/C3N and we found that it leads to a metallic and semiconducting character, respectively.[Abstract] [Full Text] [Related] [New Search]