These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular interplay between linc01134 and YY1 dictates hepatocellular carcinoma progression.
    Author: Rong Z, Wang Z, Wang X, Qin C, Geng W.
    Journal: J Exp Clin Cancer Res; 2020 Apr 09; 39(1):61. PubMed ID: 32272940.
    Abstract:
    BACKGROUND: Revealing the mechanical role of long non-coding RNAs (lncRNAs) in tumorigenesis can contribute to novel therapeutic target for cancers. The regulatory role of linc01134 in hepatocellular carcinoma (HCC) has not been studied yet. MATERIALS AND METHODS: qRT-PCR and western blot were conducted to measure relevant RNA and protein expressions. CCK-8, colony formation, EdU, flow cytometry, wound-healing, transwell assays and xenograft experiments were performed to determine the role of linc01134 in HCC. ChIP and luciferase reporter assays were performed to analyze the effects of Yin Yang-1 (YY1) on linc01134 transcription activity. Relevant mechanical experiments were performed to verify interaction between relative genes. RESULTS: YY1 enhanced linc01134 transcription by interacting with linc01134 promoter. Knockdown of linc01134 inhibited proliferation, migration and epithelial-mesenchymal transition (EMT), yet promoting apoptosis in HCC cells. Mechanically, linc01134 acted as miR-324-5p sponge and interacted with insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) to increase the stability of YY1 mRNA expression. Up-regulated YY1 continuously stimulated linc01134 expression by enhancing linc01134 promoter activity, forming a positive feedback loop. CONCLUSION: Linc01134/miR-324-5p/IGF2BP1/YY1 feedback loop mediates HCC progression, which possibly provide prognosis and treatment target of HCC.
    [Abstract] [Full Text] [Related] [New Search]