These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Production of added-value microbial metabolites during growth of yeast strains on media composed of biodiesel-derived crude glycerol and glycerol/xylose blends. Author: Diamantopoulou P, Filippousi R, Antoniou D, Varfi E, Xenopoulos E, Sarris D, Papanikolaou S. Journal: FEMS Microbiol Lett; 2020 May 01; 367(10):. PubMed ID: 32275306. Abstract: A total of 11 yeast strains of Yarrowia lipolytica, Metschnikowia sp., Rhodotorula sp. and Rhodosporidium toruloides were grown under nitrogen-limited conditions with crude glycerol employed as substrate in shake flasks, presenting interesting dry cell weight (DCW) production. Three of these strains belonging to Metschnikowia sp. accumulated significant quantities of endopolysaccharides (i.e. the strain V.V.-D4 produced 11.0 g/L of endopolysaccharides, with polysaccharides in DCW ≈ 63% w/w). A total of six Y. lipolytica strains produced either citric acid or mannitol. Most of the screened yeasts presented somehow elevated lipid and polysaccharides in DCW values at the early steps of growth despite nitrogen appearance in the fermentation medium. Lipid in DCW values decreased as growth proceeded. R. toruloides DSM 4444 cultivated on media presenting higher glycerol concentrations presented interesting lipid-accumulating capacities (maximum lipid = 12.5 g/L, maximum lipid in DCW = 43.0-46.0% w/w, conversion yield on glycerol = 0.16 g/g). Replacement of crude glycerol by xylose resulted in somehow decreased lipid accumulation. In xylose/glycerol mixtures, xylose was more rapidly assimilated from glycerol. R. toruloides total lipids were mainly composed of triacylglycerols. Total cellular fatty acid composition on xylose presented some differences compared with that on glycerol. Cellular lipids contained mainly oleic and palmitic acid.[Abstract] [Full Text] [Related] [New Search]