These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Utilization of the extract of Cedrus deodara (Roxb. ex D.Don) G. Don against the biofilm formation and the expression of virulence genes of cariogenic bacterium Streptococcus mutans. Author: Zhang Z, Lyu X, Xu Q, Li C, Lu M, Gong T, Tang B, Wang L, Zeng W, Li Y. Journal: J Ethnopharmacol; 2020 Jul 15; 257():112856. PubMed ID: 32278760. Abstract: ETHNOPHARMACOLOGICAL RELEVANCE: Cedrus deodara (Roxb. ex D.Don) G. Don is applied as anti-inflammatory and anti-infection agents in folklore medicine. AIM OF THE STUDY: The present study aimed to assess the antimicrobial activity of Cedrus deodara (Roxb. ex D.Don) G. Don extract (CDE) against Streptococcus mutans biofilm formation and its biocompatibility, as well as to identify its chemical components. MATERIALS AND METHODS: Confocal laser scanning microscopy (CLSM), crystal violet staining, and CFU counting assay were applied to investigate the effect of CDE on S. mutans biofilm formation and extracellular polysaccharides (EPS) synthesis. The microstructure of S. mutans biofilms formed on glass coverslips and bovine enamel treated with CDE was observed by scanning electron microscopy (SEM). qRT-PCR was used to measure the expression of virulence genes gtfB, gtfC, and gtfD, and zymogram assay was performed to investigate the enzymatic activity of Gtfs. Moreover, HPLC-MS and NMR were applied to identify its chemical components. CCK-8 assay was also performed on human oral cells to evaluate its biocompatibility. RESULTS: Under the treatment of CDE, S. mutans formed less biofilm on both coverslips and enamel surfaces and synthesized less EPS. Moreover, CDE downregulated the expression of gtf genes and inhibited the enzymatic activity of Gtfs. According to HPLC-MS and NMR results, molecular structures of six main compounds in CDE were identified. CDE also has a good biocompatibility. CONCLUSIONS: CDE exhibits inhibitory activity against S. mutans and a good biocompatibility. It has the potential to be developed as anti-caries agents for clinical use.[Abstract] [Full Text] [Related] [New Search]