These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: T cell epitope content comparison (EpiCC) analysis demonstrates a bivalent PCV2 vaccine has greater T cell epitope overlap with field strains than monovalent PCV2 vaccines.
    Author: Bandrick M, Gutiérrez AH, Desai P, Rincon G, Martin WD, Terry FE, De Groot AS, Foss DL.
    Journal: Vet Immunol Immunopathol; 2020 May; 223():110034. PubMed ID: 32278900.
    Abstract:
    Porcine circovirus type 2 (PCV2) has one of the highest evolutionary rates among DNA viruses. Traditionally, PCV2 vaccines have been based on the 2a genotype as this was the first genotype discovered. Today, eight genotypes of PCV2 viruses have been identified, and, taken together with the rapid evolutionary rate, propensity to recombine, and high rate of vaccination, further variation in PCV2 is expected. For these reasons, there is a growing genetic gap between available vaccines and field strains. When selecting vaccines, it is important to consider vaccines that contain T cell epitopes that are well-matched to the circulating strains. To quantify the relatedness between PCV2 vaccines and field strains, we predicted and compared their T cell epitope content and calculated Epitope Content Comparison (EpiCC) scores using established in silico tools. T cell epitopes predicted to bind common class I and class II swine leukocyte antigen (SLA) alleles were identified from two major structural proteins, the capsid (encoded by ORF2) and the replicase (encoded by ORF1). The T cell epitope content of three commercial PCV2a-based vaccines (a baculovirus expressed PCV2a ORF2 [VacAlt], a PCV1-PCV2a chimeric virus vaccine [VacA] and a combination cPCV2a-cPCV2b chimeric virus vaccine [VacAB]) and an experimental PCV2b ORF2-based chimeric virus vaccine [VacB] (Table 1), were compared to that of 161 PCV2 field strains (representing genotypes a-f). The T cell epitope content and conservation between vaccine and field strains varied. While all vaccine strains provided broad coverage of the field strains including heterologous genotypes, none of the vaccines covered all the putative T cell epitopes identified in the field strains. PCV2a-based vaccine strains generally scored higher in terms of conserved epitope content against PCV2a field isolates but were not identical. The PCV2b-based vaccine strain had higher scores against PCV2b and PCV2d field strains. The combination PCV2a-PCV2b vaccine (VacAB) had, on average, the highest EpiCC score. PCV2 continues to evolve and EpiCC analysis provides a new tool to assess the possible impact of virus genetic divergence on T cell epitope coverage of vaccine strains. Given that multiple genotypes are currently found and may co-exist on farms, this analysis suggests that a combination of PCV2a and PCV2b vaccine strains may be required to provide optimal coverage of current and future field isolates.
    [Abstract] [Full Text] [Related] [New Search]