These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Muscle energy metabolism and electrolyte shifts during low-level prolonged static contraction in man.
    Author: Sjøgaard G.
    Journal: Acta Physiol Scand; 1988 Oct; 134(2):181-7. PubMed ID: 3227943.
    Abstract:
    Seven men performed one-legged isometric knee extension at 5% MVC for 1 h. Total body oxygen uptake amounted to 451 (420-471) ml min-1 and oxygen uptake over the contracting leg to 200 (172-216) ml min-1, with no changes occurring during the 1 h contraction. Venous O2 tension decreased from 29.4 mmHg at rest to 23.1 mmHg with contraction and CO2 tension tended to increase from a resting value of 50.5 mmHg to 57.2 mmHg (n.s.). No similar changes occurred in arterial O2 and CO2 tensions. There was a small but continuous glucose uptake at both rest and throughout the contraction, whereas a lactate release occurred only in the early phase (2 min) of contraction. Muscle glycogen content was 312 mmol kg-1 dry wt at rest, no significant changes had occurred following 30 min or 1 h of contraction. Arterial and venous Hct and Hb values indicated that a flux of water occurred from the vascular bed to the contracting muscle, in which H2O increased from 3.06 l kg-1 dry wt at rest to 3.30 l kg-1 dry wt after 1 h at 5% MVC. Simultaneously potassium (K), was released from the muscle throughout contraction with a mean venous-arterial difference of 0.25 mmol l-1. With a plasma flow of 335 ml min-1 kg-1 wet wt the K loss amounted to 5 mmol kg-1 wet wt or roughly 5% of the total muscle K content.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]