These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hypoxia-induced apoptosis of cardiomyocytes is restricted by ginkgolide B-downregulated microRNA-29.
    Author: Ren D, Li F, Gao A, Cao Q, Liu Y, Zhang J.
    Journal: Cell Cycle; 2020 May; 19(10):1067-1076. PubMed ID: 32295500.
    Abstract:
    Ginkgolide B exerts a cardioprotective function against ischemia-caused apoptosis in myocardial infarction. Here we sought out to address a functional mechanism associated with microRNA-29 (miR-29). Rat cardiomyocytes (H9c2 cells) were cultured in ginkgolide B-conditioned medium prior to hypoxic induction. To construct miR-29-overexpressed cells, miR-29 mimic was transfected into H9c2 cells. The cells were harvested for assaying survivability and apoptosis by CCK-8 and FITC-Annexin V staining methods. Western blot was applied to identify apoptotic hallmarks and signaling transducers. RT-PCR was carried out for investigating miR-29 expression. Cardiomyocytes were sensitive to hypoxic apoptosis, while ginkgolide B intensified the abilities of cardiomyocytes to resist hypoxia by increasing survivability and repressing apoptosis. Specifically, ginkgolide B repressed Bax and cleaved caspase 3 while enhanced Bcl-2. Ginkgolide B buffered the expression of miR-29 induced by hypoxia. However, ginkgolide B showed a slight role in survivability and apoptosis in the cells overexpressing miR-29. Meanwhile, ginkgolide B triggered the phosphorylation of PI3 K and AKT, as well as induced Sp1, while this beneficial role was abrogated in the cells treated by miR-29 mimic. Our results confirmed that ginkgolide B might have therapeutic significance by repressing hypoxic apoptosis. Ginkgolide B-elicited miR-29 inhibition might be the basis of this beneficial role.
    [Abstract] [Full Text] [Related] [New Search]