These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Population pharmacokinetic analysis of tacrolimus in Chinese cardiac transplant recipients.
    Author: Gong Y, Yang M, Sun Y, Li J, Lu Y, Li X.
    Journal: Eur J Hosp Pharm; 2020 Mar; 27(e1):e12-e18. PubMed ID: 32296499.
    Abstract:
    OBJECTIVE: Usage of tacrolimus is complicated by its narrow therapeutic index and wide between- and within-subject pharmacokinetic variability. We aimed to obtain more information regarding the influence of various covariates on the disposition of tacrolimus in the early phase after cardiac transplantation using a population pharmacokinetic method, and provide information for the individualisation of drug dosing in the clinical setting. METHODS: Routine therapeutic drug monitoring concentrations (897 observations) were retrospectively collected from 146 hospitalised patients. One compartment model with first-order absorption (absorption rate constant Ka was fixed as 4.48/hour) was employed to establish the population pharmacokinetic model using a non-linear mixed-effects modelling approach. Various demographic parameters, postoperative day and concomitant medications influencing drug clearance and distribution volume were investigated in this study. Bootstrap and prediction-corrected visual predictive check were employed to validate the final model. With the goal of tacrolimus trough concentrations within the therapeutic window, simulation was performed. RESULTS: Pharmacokinetic parameter population typical estimates for clearance (CL/F) and apparent distribution volume (V/F) were 14.23 L/hour and 760.80 L, respectively. Postoperative day and co-administration of Wuzhi capsules were identified as important factors affecting CL/F. Total body weight was significantly associated with the V/F. Results of model evaluation indicated a good stable and precise performance of the final model. Based on the simulation results, a simple-touse dosage regimen table to guide clinicians with drug dosing was created. CONCLUSION: The final population model could provide information for the individualised dosing of tacrolimus for cardiac transplant recipients.
    [Abstract] [Full Text] [Related] [New Search]