These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of composted organic amendments and zinc oxide nanoparticles on growth and cadmium accumulation by wheat; a life cycle study. Author: Bashir A, Rizwan M, Ali S, Adrees M, Rehman MZU, Qayyum MF. Journal: Environ Sci Pollut Res Int; 2020 Jul; 27(19):23926-23936. PubMed ID: 32301070. Abstract: Cadmium (Cd) availability in arable soils is a serious issue while little is known about the role of co-composted organic amendments and zinc oxide nanoparticles (ZnO-NPs) foliar spray on biomass and Cd accumulation in wheat grains. The current study investigated the soil application of organic amendment (composted biochar and farmyard manure) at a level of 0, 1, and 2% w/w and foliar spray of ZnO-NPs (0, 100, and 200 mg/L) on biomass, yield, and Cd in wheat grains cultivated in an aged Cd-contaminated agricultural soil. The results indicated that organic amendment increased the biomass, chlorophyll concentrations, yield, and activities of peroxidase and superoxide dismutase of wheat while decreased the electrolyte leakage and Cd concentrations in different parts of wheat such as shoots, roots, husks, and grains. This effect of organic amendment was further enhanced by the foliar spray of ZnO-NPs in a dose-additive manner. Cadmium concentration in grains was below threshold level (0.2 mg/kg DW) for cereals in combined application of 200 mg/L ZnO-NPs and 1% organic amendment as well as in higher treatment (2%) of organic amendment and NPs. Thus, combined use of organic materials and NPs might be a suitable way of reducing Cd and probably other toxic trace element concentrations in wheat and other cereals.[Abstract] [Full Text] [Related] [New Search]