These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of an NGS panel containing 42 autosomal STR loci and the evaluation focusing on secondary kinship analysis.
    Author: Liu Q, Ma G, Du Q, Lu C, Fu L, Wang Q, Fu G, Li S, Cong B.
    Journal: Int J Legal Med; 2020 Nov; 134(6):2005-2014. PubMed ID: 32314064.
    Abstract:
    High-throughput next-generation sequencing (NGS) is a feasible technique to detect considerably more markers and simultaneously obtain length and sequence information in a single reaction. In this study, we developed an NGS panel including 42 commonly used autosomal short tandem repeats (STRs) and amelogenin on the Illumina MiSeq FGx™. Sequencing accuracy was validated by the consistency of 2800M Control DNA detected using the ForenSeq™ DNA Signature Prep Kit and Sanger sequencing. Nomenclature incompatibility was found between NGS-STR and CE-STR typing at 9 loci (D3S3045, D6S477, D7S3048, D9S925, D14S608, D17S1290, D18S535, D21S1270, GATA198B05), despite the correct sequence. The difference was caused by the two different methods of identifying motif sequence and a one-to-one correspondence can be found. We evaluated the panel by investigating consistency, sequencing sensitivity and the effectiveness of the 2nd-degree relationship identification. Herein, we present sequencing results from 58 unrelated individuals of the Hebei Han population. The total discrimination power (TDP) and cumulative probability of exclusion for trio paternity testing (CPEtrio) of the 42 NGS-STR panels reached 1-2.84 × 10-57 and 1-9.87 × 10-21, respectively. By family simulation and likelihood ratio (LR) calculation, this panel was shown to have effectiveness for the 2nd-degree kinship identification similar to the ForenSeq™ DNA Signature Prep Kit and certain advantages compared with it due to the relatively small number of loci. As expected, it provides new data for the development of NGS-STR typing technology.
    [Abstract] [Full Text] [Related] [New Search]