These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Highly Conductive PDMS Composite Mechanically Enhanced with 3D-Graphene Network for High-Performance EMI Shielding Application. Author: Ao D, Tang Y, Xu X, Xiang X, Yu J, Li S, Zu X. Journal: Nanomaterials (Basel); 2020 Apr 16; 10(4):. PubMed ID: 32316341. Abstract: A highly conductive three-dimensional (3D) graphene network (GN) was fabricated by chemical vapor deposition on a 3D nickel fiber network and subsequent etching process. Then a lightweight and flexible polydimethylsiloxane (PDMS)/GN composite was prepared by a vacuum infiltration method by using the graphene network as a template. The composite showed the superior electrical conductivity of 6100 S/m even at a very low loading level of graphene (1.2 wt %). As a result, an outstanding electromagnetic interference (EMI) shielding effectiveness (SE) of around 40 and 90 dB can be achieved in the X-band at thicknesses of 0.25 and 0.75 mm, respectively, which are much higher than most of the conductive polymers filled with carbon. The 3D graphene network can also act as a mechanical enhancer for PDMS. With a loading level of 1.2 wt %, the composite shows a significant increase by 256% in tensile strength.[Abstract] [Full Text] [Related] [New Search]