These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Trimethyl chitosan nanoparticles for ocular baicalein delivery: Preparation, optimization, in vitro evaluation, in vivo pharmacokinetic study and molecular dynamics simulation. Author: Li J, Jin X, Yang Y, Zhang L, Liu R, Li Z. Journal: Int J Biol Macromol; 2020 Aug 01; 156():749-761. PubMed ID: 32320806. Abstract: To improve ocular bioavailability of baicalein (BAI), trimethyl chitosan coated lipid nanoparticles of baicalein (TMC-BAI-LNPs) were prepared, optimized and characterized. The properties of TMC-BAI-LNPs such as morphology, particle size, zeta potential and fourier transform infrared spectroscopy were investigated. Additionally, molecular dynamics simulation was applied as a new method to evaluate drug-biological membrane interactions. Transmission electron microscopy showed that the LNPs were approximately spherical in shape with a smooth surface. TMC-BAI-LNPs had a particle size of 162.8 nm, a positive surface charge with a zeta potential of 26.6 mV. The entrapment efficiency and drug loading values of BAI in the formulation were 90.65% and 2.04%, respectively. Moreover, in vitro drug release revealed that TMC-BAI-LNPs had a sustained release effect. In vivo studies indicated TMC-BAI-LNPs had no ocular irritation and the AUC of TMC-BAI-LNPs was 3.17-fold than that of the control (p < 0.01). Molecular dynamics simulation data showed that BAI had a poor membrane permeability, which limited the ocular bioavailability. The results indicated that TMC-BAI-LNPs might open up a new avenue for ocular administration. Furthermore, molecular dynamics simulation could predict permeability of drugs.[Abstract] [Full Text] [Related] [New Search]