These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of RIPK1/RIPK3 ameliorates osteoclastogenesis through regulating NLRP3-dependent NF-κB and MAPKs signaling pathways. Author: Liang S, Nian Z, Shi K. Journal: Biochem Biophys Res Commun; 2020 Jun 11; 526(4):1028-1035. PubMed ID: 32321638. Abstract: Osteoblast-induced bone formation and osteoclast-regulated bone resorption are the essential events contributing to bone homeostasis. It is critical to investigate the underlying molecular mechanisms. In this study, we explored the effects of receptor-interacting serine-threonine kinases (RIPKs) on osteoclastogenesis and bone loss in vitro and in vivo. We found that both RIPK1 and RIPK3 expression levels were highly up-regulated during osteoclastogenesis. Inhibiting RIPK1 and RIPK3 by their inhibitors Necrostatin-1 (Nec-1) and GSK-872, respectively, showed effective activities against osteoclast differentiation and bone resorption induced by receptor activator of nuclear factor-κB ligand (Rankl). Osteoclast-specific gene expression levels were also impeded by RIPK1/RIPK3 blockage in a time-dependent manner. Subsequently, we found that the pyrin domain-containing protein 3 (NLRP3) inflammasome stimulated by Rankl during osteoclastogenesis was greatly inhibited by Nec-1 and GSK-872. Additionally, reducing RIPK1/RIPK3 overtly reduced the activation of NF-κB (p65) and mitogen-activated protein kinases (MAPKs) signaling during Rankl-induced osteoclast formation. Notably, adenovirus-regulated NLRP3 over-expression significantly abrogated the inhibitory effects of Nec-1 and GSK-872 on NF-κB and MAPKs signaling pathways, as well as the osteoclastogenesis. Finally, the in vivo studies indicated that suppressing RIPK1/RIPK3 could effectively ameliorate ovariectomy (OVX)-induced bone loss in mice through repressing osteoclastogenesis, as proved by the clearly down-regulated number of osteoclasts via histological staining. In conclusion, our study elucidated that restraining RIPK1/RIPK3 could hinder osteoclastogenesis and attenuate bone loss through suppressing NLRP3-dependent NF-κB and MAPKs signaling pathways. Therefore, targeting RIPK1/RIPK3 signaling might be a potential therapeutic strategy to develop effective treatments against osteoclast-related bone lytic diseases.[Abstract] [Full Text] [Related] [New Search]