These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Antimicrobial evaluation of thiadiazino and thiazolo quinoxaline hybrids as potential DNA gyrase inhibitors; design, synthesis, characterization and morphological studies.
    Author: Ammar YA, Farag AA, Ali AM, Hessein SA, Askar AA, Fayed EA, Elsisi DM, Ragab A.
    Journal: Bioorg Chem; 2020 Jun; 99():103841. PubMed ID: 32325335.
    Abstract:
    A series of thiadiazino[5,6-b]quinoxaline and thiazolo[4,5-b]quinoxaline derivatives was designed and synthetized from the reaction of 2,3-dichloro-6-(morpholinosulfonyl)quinoxaline (2) with thiosemicarbazide or thiocarbohydrazide and thiourea derivatives to give nineteen quinoxaline derivatives 3-16. All the synthesized compounds were evaluated for in vitro antimicrobial potential against various bacteria and fungi strains that showed considerable antimicrobial activity against tested microorganisms. The most potent compounds 2, 7, 9, 10, 12 and 13c were exhibited bactericidal activity, in addition to fungistatic activity by dead live assay. Moreover, these compounds showed a significant result against all multi-drug resistance (MDRB) used especially compound 13c that displayed the best results with MICs of MDRB (1.95, 3.9, 2.6, 3.9 µg/mL) for stains used in this study, compared with Norfloxacin (1.25, 0.78, 1.57, 3.13 µg/mL). Also, cytotoxicity on normal cell (Vero cells ATCC CCL-81) by MTT assay was performed with lower toxicity results. Additionally, morphological studies, immunostimulatory potency and DNA gyrase inhibition assay of most active compounds was done. A molecular docking study has also been carried out to support the effective binding of the most promising compounds at the active site of the target enzyme S. aureus DNA gyrase (2XCT).
    [Abstract] [Full Text] [Related] [New Search]