These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Coproduction of xylooligosaccharides and fermentable sugars from sugarcane bagasse by seawater hydrothermal pretreatment.
    Author: Zhang X, Zhang W, Lei F, Yang S, Jiang J.
    Journal: Bioresour Technol; 2020 Aug; 309():123385. PubMed ID: 32325380.
    Abstract:
    In this study, natural seawater without additional chemicals was selected to treat sugarcane bagasse for the production of xylooligosaccharides and glucose. This pretreatment not only more effectively conserves freshwater resources than hydrothermal pretreatment and enzymatic hydrolysis, but also decreases corrosion of the equipment relative to techniques utilizing acid and alkaline pretreatment. The maximum yield of 67.12% xylooligosaccharides (of initial xylan), including 11.49% xylobiose, 16.23% xylotriose, 23.82% xylotetraose, and 15.58% xylopentaose was obtained under mild condition (175 °C for 30 min). Moreover, greater amounts of xylotetraose were generated during seawater hydrothermal pretreatment under all conditions, likely because NaCl in seawater cut the hydrogen bonds between xylo-oligomers. In addition, 94.69% cellulose digestibility and 78.58% xylan digestibility were achieved from the solid residue with an enzyme dosage of 30 FPU/g cellulose. Results indicated that seawater hydrothermal pretreatment is a more environmentally-friendly and sustainable technique for producing xylooligosaccharides and fermentable sugars than other methods.
    [Abstract] [Full Text] [Related] [New Search]