These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes.
    Author: Krueger BK, Forn J, Greengard P.
    Journal: J Biol Chem; 1977 Apr 25; 252(8):2764-73. PubMed ID: 323254.
    Abstract:
    Agents known to inphorylation of specific endogenous proteins in intact synaptosomes from rat brain. Synaptosome preparations, preincubated in vitro with 32Pi, incorporated 32P into a variety of specific proteins. Veratridine and high (60 mM) K+, which increase Ca2+ transport across membranes, through a mechanism involving membrane depolarization, as well as the calcium ionophore A23187, each markedly stimulated the incorporation of 32P into two specific proteins (80,000 and 86,000 daltons) as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. All three agents failed to stimulate protein phosphorylation in calcium-free medium containing ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (EGTA). Moreover, the Ca2+-dependent protein phosphorylation could be reversed by the addition of sufficient EGTA to chelate all free extracellular Ca2+. Veratridine, high K+, and A23187 also stimulated 45Ca2+ accumulation by synaptosomes. Tetrodotoxin blocked the stimulation both of protein phosphorylation and of 45Ca2+ accumulation by veratridine but not by high K+ or A23187. Cyclic nucleotides and several putative neurotransmitters were without effect on protein phosphorylation in these intact synaptosome preparations. The absence of any endogenous protein phosphorylation in osmotically shocked synaptosome preparations incubated with 32Pi, and the inability of added [gamma-32P]ATP to serve as a substrate for veratridine-stimulated protein phosphorylation in intact preparations, indicated that the Ca2+-dependent protein phosphorylation occurred within intact subcellular organelles. Fractionation of a crude synaptosome preparation on a discontinuous Ficoll/sucrose flotation gradient indicated that these organelles were synaptosomes rather than mitochondria. The data suggest that conditions which cause an accumulation of calcium by synaptosomes lead to a calcium-dependent increase in phosphorylation of specific endogenous proteins. These phosphoproteins may be involved in the regulation of certain calcium-dependent nerve terminal functions such as neurotransmitter synthesis and release.
    [Abstract] [Full Text] [Related] [New Search]