These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Symposium review: Genetic relationships between different measures of feed efficiency and the implications for dairy cattle selection indexes.
    Author: Tempelman RJ, Lu Y.
    Journal: J Dairy Sci; 2020 Jun; 103(6):5327-5345. PubMed ID: 32331885.
    Abstract:
    A greater number of dairy economic selection indexes are incorporating a measure of feed efficiency (FE) as a key trait. Definitions of FE traits have ranged from dry matter intake (DMI) to residual feed intake (RFI), noting that RFI is effectively DMI adjusted for various energy sink traits such as body weight (BW) and milk energy (MilkE). Other definitions of FE fall between these 2 extremes such as feed saved (FS), which combines RFI and the portion of DMI required to maintain BW. The choice between different FE traits can create confusion as to how to meaningfully compare their heritabilities, estimated breeding values (EBV) and their corresponding reliabilities, and how to differentially incorporate these EBV into selection indexes. If RFI and FS are merely linear functions of DMI, BW, and MilkE with known genetic variances and covariances between these 3 traits, there may be no need to directly compute RFI or FS phenotypes to determine their heritabilities, genetic correlations, EBV, and respective reliabilities for individual animals. We demonstrate how the estimated total genetic merit is invariant to the specification of a FE trait within a selection index. That is, economic weights for a selection index involving one particular FE trait readily convert into the economic weights for a selection index involving a different linear function of that FE trait. We use these different specifications of FE to provide insight as to the effect of the degree of missingness (e.g., paucity of DMI relative to milk yield records) on the EBV accuracies of the various derivative FE traits. We particularly highlight that the generally observed higher EBV accuracies for DMI, then for FS, and lastly for RFI are partly driven by the greater genetic correlations of DMI with BW and MilkE and of FS with BW. Finally, we advocate a genetic regression approach to deriving FS and RFI recognizing that genetic versus residual relationships between FE component traits may differ substantially from each other.
    [Abstract] [Full Text] [Related] [New Search]