These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Facile Fabrication of Hierarchical MOF-Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules. Author: Chen J, Zhang B, Qi L, Pei Y, Nie R, Heintz P, Luan X, Bao Z, Yang Q, Ren Q, Zhang Z, Huang W. Journal: ACS Appl Mater Interfaces; 2020 May 20; 12(20):23002-23009. PubMed ID: 32338862. Abstract: Multifunctional metal-organic frameworks (MOFs) that possess permanent porosity are promising catalysts in organic transformation. Herein, we report the construction of a hierarchical MOF functionalized with basic aliphatic amine groups and polyvinylpyrrolidone-capped platinum nanoparticles (Pt NPs). The postsynthetic covalent modification of organic ligands increases basic site density in the MOF and simultaneously introduces mesopores to create a hierarchically porous structure. The multifunctional MOF is capable of catalyzing a sequential Knoevenagel condensation-hydrogenation-intramolecular cyclization reaction. The unique selective reduction of the nitro group to intermediate hydroxylamine by Pt NPs supported on MOF followed by intramolecular cyclization with a cyano group affords an excellent yield (up to 92%) to the uncommon quinoline N-oxides over quinolines. The hierarchical MOF and polyvinylpyrrolidone capping agent on Pt NPs synergistically facilitate the enrichment of substrates and thus lead to high activity in the reduction-intramolecular cyclization reaction. The bioactivity assay indicates that the synthesized quinoline N-oxides evidently inhibit the proliferation of lung cancer cells. Our findings demonstrate the feasibility of MOF-catalyzed direct synthesis of bioactive molecules from readily available compounds under mild conditions.[Abstract] [Full Text] [Related] [New Search]