These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Validation of a Noninvasive Assessment of Pulmonary Gas Exchange During Exercise in Hypoxia.
    Author: Howe CA, MacLeod DB, Wainman L, Oliver SJ, Ainslie PN.
    Journal: Chest; 2020 Oct; 158(4):1644-1650. PubMed ID: 32343965.
    Abstract:
    BACKGROUND: Pulmonary gas exchange efficiency, determined by the alveolar-to-arterial Po2 difference (A-aDo2), progressively worsens during exercise at sea-level; this response is further elevated during exercise in hypoxia. Traditionally, pulmonary gas exchange efficiency is assessed through measurements of ventilation and end-tidal gases paired with direct arterial blood gas (ABG) sampling. Because these measures have a number of caveats, particularly invasive blood sampling, the development of new approaches for the noninvasive assessment of pulmonary gas exchange is needed. RESEARCH QUESTION: Is a noninvasive method of assessing pulmonary gas exchange valid during rest and exercise in acute hypoxia? STUDY DESIGN AND METHODS: Twenty-five healthy participants (10 female) completed a staged maximal exercise test on a cycle ergometer in a hypoxic chamber (Fio2 = 0.11). Simultaneous ABGs via a radial arterial catheter and noninvasive gas-exchange measurements (AGM100) were obtained in 2-minute intervals. Noninvasive gas exchange, termed the O2 deficit, was calculated from the difference between the end-tidal and the calculated Pao2 (via pulse oximetry and corrected for the Bohr effect by using the end-tidal Pco2). Noninvasive O2 deficit was compared with the traditional alveolar to arterial oxygen difference (A-aDo2), using the traditional Riley analysis. RESULTS: Under conditions of rest at room air, hypoxic rest, and hypoxic exercise, strong correlations between the calculated gPao2 and directly measured Pao2 (R2 = 0.97; P < .001; mean bias = 1.70 mm Hg) were observed. At hypoxic rest and exercise, strong relationships between the estimated and directly measured Pao2 (R2 = 0.68; P < .001; mean bias = 1.01 mm Hg) and O2 deficit with the traditional A-aDo2 (R2 = 0.70; P < .001; mean bias = 5.24 mm Hg) remained. INTERPRETATIONS: Our findings support the use of a noninvasive measure of gas exchange during acute hypoxic exercise in heathy humans. Further studies are required to determine whether this approach can be used clinically as a tool during normoxic exercise in patients with preexisting impairments in gas exchange efficiency.
    [Abstract] [Full Text] [Related] [New Search]